

Characteristics of New Oil Soluble Polyalkylene Glycols

Dr. Govind Khemchandani The Dow chemical Company

STLE HOUSTON CHAPTER

FEBURARY 9, 2011

gvkhemchandani@dow.com Tel: 1-979-238-4045

Introduction

- New OSP technology offers many benefits in lubricant formulations
- OSPs offer options to upgrade hydrocarbon oils to boost viscosity index and improve deposit control
- OSPs can provide improved friction control when used as an additive. They may provide an alternative to synthetic esters as friction modifiers.
- The flexibility of PAG chemistry provides a huge amount of space for innovation and providing solutions to specifications and standards of the future

Evolution to OSP™ technology

- Polymers can be designed having a wide range of viscosities (10-20,000 cSt at 40°C)
- Extremely versatile and can be tailored designed to have many specific functionalities

What is different?

CHEMICAL COMPOSITION: POLYALKYLENE GLYCOL VS. HYDROCARBON OILS

Dow

Oxidation Processes Comparison

Mineral & Synthetic Hydrocarbon Oil vs. Polyalkylene Glycols

Controlling Deposit Formation using PAGs

Thousands of rotary screw air compressors and other turbo-machinery use conventional PAG technology

Gas turbine

In recent years, there has been an increasing number of reported cases associated with varnish and sludge formation in turbine-generator applications and especially gas turbines. PAGs are providing a solution.

Field studies in emerging applications for PAGs such as tunnel boring and wind turbine lubricants show deposit free operation

Formulating lubricants by upgrading hydrocarbon oils with oil soluble PAGs as a co-base oil may provide solutions to controlling deposits

Oil Soluble PAGs – Typical Physical

Properties

Grade	Viscosity at 40ºC, cSt	Viscosity at 100∘C, cSt	Viscosity Index	CCS viscosity at -20ºC, mPa.s	
	ASTM D445	ASTM D445	ASTM D2270	ASTM D5293	
OSP-32	32	6.5	146	1750	
OSP-46	46	8.5	164	2900	
OSP-68	68	12	171	5400	
OSP-150	150	23	186	17100	
OSP-220	220	32	196	29100	
OSP-680	680	77	196	n/d	

Grade	Flash Point (COC), Fire Point, °C °C		Four ball wear, mm	Pour Point, °C	
	ASTM D92	ASTM D92	ASTM D4172	ASTM D97	
OSP-32	216	242	n/d	<-43	
OSP-46	210	240	0.58	<-43	
OSP-68	218	258	n/d	<-40	
OSP-150	228	258	0.43	-37	
OSP-220	226	258	0.46	-34	
OSP-680	243	260	0.38	-30	

UCON Grade	Viscosity at	Viscosity at	Viscosity	Pour Point	
	40°C, cSt	100°C, cSt	Index	deg. C	
	ASTM D445	ASTM D445	ASTM D2270	ASTM D97	
OSP-32	32	6.5	146	<-43	
OSP-46	46	8.5	164	<-43	
OSP-68	68	12	171	<-40	
OSP-220	220	32	196	-34	
OSP-680	680	77	196	-30	

UCON Grade	Viscosity at	Viscosity at	Viscosity	Pour Point
	40°C, cSt	100°C, cSt	Index	deg. C
	ASTM D445	ASTM D445	ASTM D2270	ASTM D97
PAO-6	31	5.1	138	-57
PAO-8	48	8.0	139	-48
PAO-10	66	10	137	-48
PAO-40	396	29	147	-36
PAO-100	1240	100	170	-30

Expanding functionality of PAGs using OSPs

Use of OSPs Expansion of formulators options

Primary base oil in formulations

- Compressor/refrigeration oils
 - Hydraulic fluids
 - Gear & Bearing Oils
 - Engine/transmission Oils

Co-base oil

- Upgrade Group I-III mineral oils
- Upgrade PAO's
- Improve additive solubility

Additives

- Deposit control additive
- Friction modifier
- Viscosity builder in mineral oils

Miscibility of OSPs in Common Base Oils

Typical Miscibility Features

Chemistry	OSP/Base Oil	OSP/Base Oil	OSP/Base Oil
	10/90 w/w	50/50 w/w	90/10 w/w
Group I Mineral oils	Miscible	Miscible	Miscible
Group II and III Mineral oils	Miscible	Miscible	Miscible
PAO-4, 6, 8	Miscible	Miscible	Miscible
PAO-40	Partial Miscible	Partial Miscible	Partial Miscible
Diesters & Polyol esters	Miscible	Miscible	Miscible
Naphthenics	Miscible	Miscible	Miscible
PAG's - PO homo- polymers	Miscible	Miscible	Miscible

Miscibility defined as clear homogeneous solutions before and after storing at ambient temperature and 80°C for 168 hours

•Example above shows specifically OSP-46 / OSP-36 fully miscible with PAO-40

•Miscibility improvements ongoing with higher viscosity PAOs

Traction coefficients were measured on a Mini Traction Machine with a ³/₄ inch steel ball rotating on a steel disk

Directly comparing alkoxide chemistries

Friction coefficients EO/PO< PO/BO < PO

Under high contact pressures, OSPs impart friction reducing properties in hydrocarbon base stocks. The polar nature of PAGs helps migration to the metal surface. Mechanism of action is being studied

Friction Performance of OSPs as Additives in PAO

Mini-traction machine, steel ball on steel disc, temperature 80°C, , SRR = 10%, Pressure = 0.9GPa

Dov

Polyalphaolefin is a PAO-8 base oil (un-additized)

OSP's may offer another choice to esters and other film forming additives

Oil Soluble PAG Base Oil (ISOVG-46) with 2% anti-oxidant

	Phenolic AO 1	Phenolic AO 2	Aminic AO 3	Aminic AO 4	RPVOT (min)
Formulation	%	%	%	%	
A (Base Oil)	0	0	0	0	15
В	2	0	0	0	70
С	0	2	0	0	60
D	0	0	2	0	935
E	0	0	0	2	966
F	0	1	1	0	440
Proprietary (2%)					1530

Method used was ASTM D2272 Rotary Pressure Vessel Oxidation Test

NOACK Volatility

Test Duration 60 minute, Temperature = 250°C

Dov

OSP polymerization technology produces a broad molecular weight distribution

UCON OSP Recommended Applications & Uses

Base Oil Uses

	OSP-32	OSP-46	OSP-68	OSP-150	OSP-220	OSP-320	OSP-460	OSP-680
Hydraulics	X	X	х					
Gas Compressors	X	X	Х	X				
Industrial Gas Turbines	Х	X						
Industrial Gears				X	Х	х	Х	
Auto Engine Oils	Х	Х						
Metal Deformation				X	X	X	X	Х
Greases			Х	X	X	X	X	X

Selection criteria's based on typical viscosity requirements for specific applications

Additive Uses

	OSP-32	OSP-46	OSP-68	OSP-150	OSP-220	OSP-320	OSP-460	OSP-680
Friction Modifier	Х	Х						
Viscosity Modifier							X	Х
Deposit Control Additive	Х	Х	Х					
PAGs are being used in grease formulations. OSP 220 has been used for Li								
complex grease formulation.								

Conclusions

- The formulators and researchers have another option for using PAGs as a "tool" for solving some of our industry problems.
- Formulators can now use Oil Soluble PAGs as a primary base oil, a co-base oil or as an additive in formulations
- Equipment conversions from hydrocarbon oils to Oil Soluble PAGs is simpler and less problematical
- OSPs offer options to upgrade hydrocarbon oils to boost viscosity index and improve deposit control
- OSPs can provide improved friction control when used as an additive. They may provide an alternative to synthetic esters as friction modifiers.
- The flexibility of PAG chemistry provides a huge amount of space for innovation and providing solutions to specifications and standards of the future

Tel:979-238-4045

