ASTM Subcommittee D02.G on Lubricating Grease

- Update on Activities

David Turner
Shell Global Solutions (US) Inc.

John Graham
Exxon Mobil Research & Engineering
Introduction to ASTM

● ASTM International
 ▪ Formed in 1898, to address railroad steel quality specifications
 ▪ Now one of the world’s largest voluntary standards development organizations

● Mission statement
 ▪ To be recognized globally as the premier developer & provider of voluntary consensus standards, related technical information, & services that:
 • promote public health & safety, support the protection & sustainability of the environment, & the overall quality of life
 • contribute to the reliability of materials, products, systems & services
 • facilitate international, regional, & national commerce

● Participation & membership is open to anyone
ASTM Overview

- **Some basic statistics**
 - Over 140 technical committees
 - Involved in a wide range of technical & management sectors
 - Over 31,000 members from more than 175 countries
 - Over 11,000 active standards used internationally

- **Membership balanced across interests**
 - Producers, users, consumers, general interest parties (e.g. academicians & government representatives)

- **Objectives**
 - To ensure the fair representation & participation of key stakeholders in ASTM International activities
 - To help assure the development of technically sound, market relevant standards.
Subcommittee D02.G

Scope:

- Lubricating greases & grease components
 - Base fluids, thickeners, & additives
- Promotion of technical knowledge
- Development & maintenance of
 - Standard test methods
 - Specifications, guides, practices
 - Terminology
Subcommittee D02.G

Officers:
- Chair: David Turner
- Vice Chair: Raj Shah
- Secretary (ballots): Matt Sivik
- Secretary (minutes): John Graham
- Secretary (membership): John Sander

ASTM Staff
- Staff Manager: David Bradley
- Administrative Assistant: Lisa Drennen
- Editorial Assistant: Nicole Baldini
Subcommittee D02.G Structure

- Seven Sections
 - Section 1: Chemical & General Laboratory Tests – Joe Kaperick
 - Section 2: Consistency & Related Rheological Tests – Tom Boersig
 - Section 3: Physical Tests – Steve Humphreys
 - Section 4: Functional Tests – Tribology – Mike Anderson
 - Section 5: Functional Tests – Temperature – John Graham
 - Section 6: Functional Tests – Contamination – Matt Bailey
 - Section 7: Research Techniques – Gareth Fish

- Related Groups
 - D02.09.E: Oxidation of Lubricating Grease – John Graham
 - D02.B0.04: Automotive Greases – Gareth Fish
 - USA TAG Grease Panel – David Turner
Current Issues

- **SI units initiative**
 - ASTM is working to convert all test methods to SI units

- **ASTM initiative to eliminate mercury from standards**
 - Subcommittee G is working to implement this
 - Mostly affects mercury-in-glass thermometers

- **Elimination of undesirable or obsolete solvents**
 - Removal of chloroform & 1,1,1-trichloroethane
 - Replacement of D235 specification mineral spirits

- **Standardization of equipment cleaning methods**
 - Questionnaire distributed to full Sub G membership
Section 1 - Standards

- D128 Grease Analysis
- D1404 Deleterious Particles
- D4048 Copper Corrosion
- D4289 Elastomer Compatibility Practice
- D6185 Grease Compatibility Practice
- D7527 Antioxidant Contact by Linear Sweep Voltammetry (RULER Test)
- D7718 In-Service Grease Sampling Practice
D128 Grease Analysis

- Oldest lubricating grease standard
 - Originally published in 1922
 - Includes many basic definitions
 - Tests for thickener, base oil, free alkali, free fatty acid content, etc.

- Currently being heavily revised
 - Keep only sections relevant to contemporary greases & still in use
 - May be issued as separate new standards
D1404 Deleterious Particles

- Counts abrasive particles in grease
 - Related to grease cleanliness
- Plastic plates scratched by abrasive particles
 - Report includes pressure applied & number of scratches
- NLGI Technical Committee on grease cleanliness
 - NLGI-ELGI Working Group & mini round-robin
 - D1404 method under evaluation
 - Comparison with other methods (e.g. Hegman Gauge, FTM 3005.4, DIN 51 813)
 - Identify potential improvements to method
D7527 Antioxidant Content by Voltammetry

- Published in 2010
- Measures remaining primary antioxidants (phenolic & aminic) in the product
 - Estimation of remaining useful service life of the product
- Measurement performed using the RULER instrument
 - Established technology with proven reputation
 - Assist with recommendation for continued use or replacement of in-service grease
D7718 In-Service Grease Sampling Practice

- Need identified for a standard guide for sampling in-service greases
 - Gearboxes, electric motors, actuators, etc
- In-service grease sampling more difficult than oil
 - How to obtain “representative” sample?
- Guide addresses multiple issues:
 - Location for sampling (proximity to contact surfaces)
 - How to extract sample (syringe, spatula, collector)
 - Maintaining sample integrity (during/after sampling)
 - Coping with inhomogeneous samples
Section 2 - Standards

- D217 Cone Penetration
- D1092 Apparent Viscosity
- D1403 Small-Scale Cone Penetration
- D1831 Roll Stability
- D7342 Shear Stability in the Presence of Water
D217 Cone Penetration

- Methods for undisturbed, unworked, worked, extended worked, & block penetration
 - Originally published in 1925
- ASTM definition of “lubricating grease”
 - Lists NLGI consistency grades
- Revised standard issued in 2010
 - Now specifies 3 measurements from a single specimen
 - Previously required 3 specimens for NLGI 3 & softer greases
 - Allows use of alternate sample cooling methods
 - Recent round-robin to confirm & update precision statements
D1403 Small-Scale Cone Penetration

- ½-scale & ¼-scale versions of D0217
 - Unworked & worked penetration only
 - Manual working
- Used when sample quantity is limited
- Used in some other test methods
e.g. D1831 Roll Stability
- Revised standard issued in 2010
 - Similar modifications to D0217
 - Recent round-robin to confirm & update precision statements
New standard added in 2007, reapproved in 2012

Two procedures:
- Wet working (100,000 strokes)
- Wet roll stability (2 hours @ room temperature)

10% Water added to grease
- Premixed into grease before test (worker)
- Added separately at start of test (roll stability tester)

Measure change in penetration
- Shear stability in the presence of water
Section 3 - Standards

- D566 Dropping Point
- D972 Evaporation Loss
- D1742 Oil Separation
- D2265 Dropping Point (wide temp range)
- D2595 Evaporation Loss (wide temp range)
- D4425 Oil Separation (centrifugal)
- D6184 Oil Separation (conical sieve)
D566 Dropping Point

- Original dropping point test method using oil bath
 - First published in 1940
 - Limited to 288°C maximum temperature
- Balloted for withdrawal in 2008
 - 2 negative votes received
 - Still referenced & required by some users
 - e.g. Military grease specifications
- Standard reapproved in 2009
D2265 Dropping Point (wide temperature range)

- Aluminum block test method
 - Wide temperature range
 - Up to 309°C maximum temperature

- Used for high temperature greases:
 - Complex soap, polyurea, calcium sulfonate thickeners

- Manual method using mercury thermometer
 - Difficult to find alternatives to mercury
 - Rate of heat transfer & response time critical
 - Candidate PRT system may be $3K/each for initial trials
Section 4 - Standards

- D2266 Four-Ball Wear
- D2509 Timken
- D2596 Four-Ball EP
- D4170 Fretting Wear (Fafnir)
- D5706 EP by SRV
- D5707 Friction & Wear by SRV
- D7420 Tribomechanical Properties of Grease Lubricated Plastic Socket Suspension Joints by SRV
- D7594 Fretting Wear Test by SRV
D2266 & D2596 Four-Ball Wear & EP

- Four balls in pyramid configuration
 - Three balls fixed, one ball spinning
- D2266 Wear Test
 - 1200 RPM, 75°C, 40 kg, 60 minutes
 - Measure scar diameter on fixed balls
- D2596 EP Test
 - 1770 RPM, 27°C, 10 seconds/load
 - Increasing load stages; run to weld point
 - Plan to harmonize conditions with oil test
 - US & European versions operate at different speeds
SRV-Based Standards

- D5706 (EP), D5707 (Friction & Wear), D7420 (Plastic Suspension Joints), D7594 (Fretting Wear)
 - All utilize ball-on-disk or pin-on-disk configuration
 - Can increase step load to lubricant film rupture

Variables:
- Temperature
- Applied Load
- Stroke length
- Frequency of oscillation
- Test piece materials
Section 5 - Standards

- D1263 Wheel Bearing Leakage
- D1478 Low-Temperature Ball Bearing Torque
- D3336 High-Temperature Ball Bearing Life
- D3527 Wheel Bearing Life
- D4290 Wheel Bearing Leakage (Accelerated)
- D4693 Low-Temperature Wheel Bearing Torque
D1263 Wheel Bearing Leakage

- 1930’s Ford front wheel bearing hub
 - Conditions: 660 RPM, 105°C, 6 hours
 - Leakage reported in grams
- Balloted for withdrawal in 2010
 - Approved with no negatives
- Superseded by D4290 accelerated test
D3527 High Temperature Wheel Bearing Life

- Same hardware as for D4290 (Leakage) test
 - Based on 1950’s front wheel hub assembly
 - 1000 rpm, 111 N thrust load, 160°C
 - Cyclic operation: 20 hours on, 4 hours off
 - Electric motor current measured
 - Failure based exceeding allowed increase

- D3527 test precision issues
 - Task force investigation
 - Identify inconsistencies, ambiguities
 - Evaluate potential effects of major changes
 - Reproducibility & test severity
Section 6 - Standards

- D1264 Water Wash-Out
- D1743 Rust Test (Distilled Water)
- D4049 Water Spray-Off
- D5969 Rust Test (Synthetic Sea Water)
- D6138 Dynamic Rust Test (Emcor)
D4049 Water Spray-Off

- Direct impingement of a water spray on a grease-coated steel plate
 - Grease film – 0.8 mm (1/32 inch)
 - Water at 38°C (100°F), 276 kPa (40 psi)
 - 5 minutes spray time
 - Results reported as % loss
- Mini round-robin conducted
 - Clarify specification & designation for spray nozzle
 - Orientation, calibration, cleaning
D6138 Dynamic Rust Test (Emcor)

- **SKF test method**
 - 1306 K double-row self-aligning ball bearings (steel cage)
 - Two bearings per grease sample (i.e. duplicate)
 - 168 hour test cycle:
 - 3 x (8 hours on, 16 hours off)
 - Then 108 hours off
 - Distilled water, or corrosive solution

- **Rating scale:**
 - From ‘0’ (no corrosion)
 - To ‘5’ (>10% corrosion)
Section 7 – Test Method Development

Main activities:

- Grease Rheometry
- Lincoln Ventimeter Test Standardization
- Grease Density Measurement
- Thin Film Thermal Stability
Grease Rheometry

- Potential to be powerful technique
 - Useful for evaluation of in-service greases
 - Small sample size (~5 g)
 - Test under controlled conditions
 - e.g. applied stress, temperature, frequency
- Initial focus on a fundamental test
 - Controlled stress-sweep
 - Irreversible breakdown of thickener structure
- More complex methods to follow
Lincoln Ventmeter Test Standardization

- Grease mobility at low temperatures
- Standardization of well-known Lincoln test method
 - Small-scale version of centralized distribution system
 - 762 cm (300 in) of 3 mm (⅛-in) tubing
- Grease pressurized at start of test
 - Measures time required for the pressure to drop to a predetermined value
 - Establish recommended minimum operating temperature
D02.09.E Grease Oxidation - Standards

- D942 Pressure Vessel Oxidation

- D5483 Oxidation Induction Time by Pressure Differential Scanning Calorimetry
D5483 PDSC Oxidation Induction Time

- Static oxidation test
 - Very small sample size (2 mg)
 - 2.5 MPa (500 psi) pure oxygen
 - Temperature 155–210°C

- Exotherm on chart indicates oxidation
 - Oxidation induction time reported in minutes
 - Result at highest temperature with induction time \geq 10 minutes

- Current standard developed on specific manufacturer’s equipment
 - Round-robin planned to establish updated precision statement using equipment from multiple manufacturers
D02.B0.04 Automotive Greases - Standard

- D4950 Standard Classification & Specification for Automotive Service Greases
 - Developed by SAE, ASTM, & NLGI
 - Defines wheel bearing grease categories GA, GB, & GC
 - Defines chassis grease categories LA & LB

- NLGI policy:
 - Only GC & LB service marks may be displayed
USA Technical Advisory Group Grease Panel

- Technical Advisory Group to ANSI (American National Standards Institute)
 - ANSI is US voting member of ISO
- TAG Provides input & voting advice to ANSI for ISO standards related to lubricating grease
- Some ASTM D02.G Section Chairs also chair ISO working groups
Areas of Possible Future Interest

- Grease Noise Testing
 - e.g. SKF BeQuiet+, FAG MGG
- Flammability Resistance
 - Of major interest for Steel Mills
- Additional Rheology methods
 - More complex evaluations
- Automatic Dropping Point
- Micro-oxidation (Penn State)
Other ASTM Activities

- **Inter-Laboratory Correlation Program (ILCP)**
 - 41 proficiency programs covering variety of products
 - Grease program runs in April & October
 - Participating labs receive coded reports with statistical analysis
 - Can form part of lab Quality System processes

- **ASTM Certification Programs**
 - New initiative by ASTM
 - By request, may add:
 - Personnel certification program
 - Product certification program
Feedback Request

Please advise David Turner (david.turner@shell.com), or any subcommittee officer, of any grease test method development needs

ASTM International Headquarters in USA
- Tel: +1 (1) 610 832 9500 / Fax: +1 (1) 610 832 9555
- e-mail: service@astm.org / Web: www.astm.org

ASTM European Office
- Tel: +44 (0)1462 437933 / Fax: +44 (0)1462 433678
- e-mail: atp@ameritech.co.uk / Web: www.ameritech.co.uk/astm
Questions?