

ASTM Subcommittee D02.G on Lubricating Grease

- Update on Activities

David Turner Shell Global Solutions (US) Inc.

John Graham Exxon Mobil Research & Engineering

Introduction to ASTM

ASTM International

Standards Worldwide

- Formed in 1898, to address railroad steel quality specifications
- Now one of the world's largest voluntary standards development organizations

Mission statement

- To be recognized globally as the premier developer & provider of voluntary consensus standards, related technical information, & services that:
 - promote public health & safety, support the protection & sustainability of the environment, & the overall quality of life
 - contribute to the reliability of materials, products, systems & services
 - facilitate international, regional, & national commerce
- Participation & membership is open to anyone

ASTM Overview

Standards Worldwide

Some basic statistics

- Over 140 technical committees
 - Involved in a wide range of technical & management sectors
- Over 31,000 members from more than 175 countries
- Over 11,000 active standards used internationally

Membership balanced across interests

Producers, users, consumers, general interest parties (e.g. academicians & government representatives)

Objectives

- To ensure the fair representation & participation of key stakeholders in ASTM International activities
- To help assure the development of technically sound, market relevant standards.

Subcommittee D02.G

Scope:

- Lubricating greases & grease components
 Base fluids, thickeners, & additives
- Promotion of technical knowledge
- Development & maintenance of
 - Standard test methods
 - Specifications, guides, practices
 - Terminology

Subcommittee D02.G

- Officers:
 - Chair
 - Vice Chair
 - Secretary (ballots)
 - Secretary (minutes)
 - Secretary (membership)

ASTM Staff

- Staff Manager
- Administrative Assistant
- Editorial Assistant

David Turner Raj Shah Matt Sivik John Graham John Sander

David Bradley Lisa Drennen Nicole Baldini

Subcommittee D02.G Structure

Seven Sections

- Section 1: Chemical & General Laboratory Tests Joe Kaperick
- Section 2: Consistency & Related Rheological Tests Tom Boersig
- Section 3: Physical Tests Steve Humphreys
- Section 4: Functional Tests Tribology Mike Anderson
- Section 5: Functional Tests Temperature John Graham
- Section 6: Functional Tests Contamination Matt Bailey
- Section 7: Research Techniques Gareth Fish

Related Groups

- D02.09.E: Oxidation of Lubricating Grease John Graham
- D02.B0.04: Automotive Greases Gareth Fish
- USA TAG Grease Panel David Turner

Current Issues

- SI units initiative
 - ASTM is working to convert all test methods to SI units
- STM initiative to eliminate mercury from standards
 - Subcommittee G is working to implement this
 - Mostly affects mercury-in-glass thermometers
- Elimination of undesirable or obsolete solvents
 - Removal of chloroform & 1,1,1-trichloroethane
 - Replacement of D235 specification mineral spirits
- Standardization of equipment cleaning methods
 Questionnaire distributed to full Sub G membership

Section 1 - Standards

- D128 Grease Analysis
- D1404 Deleterious Particles
- D4048 Copper Corrosion
- D4289 Elastomer Compatibility Practice
- D6185 Grease Compatibility Practice
- D7527 Antioxidant Contact by Linear Sweep Voltammetry (RULER Test)
- D7718 In-Service Grease Sampling Practice

D128 Grease Analysis

Oldest lubricating grease standard

- Originally published in 1922
- Includes many basic definitions
- Tests for thickener, base oil, free alkali, free fatty acid content, etc.

Currently being heavily revised

- Keep only sections relevant to contemporary greases & still in use
- May be issued as separate new standards

D1404 Deleterious Particles

- Counts abrasive particles in grease
 Related to grease cleanliness
- Plastic plates scratched by abrasive particles
 Report includes pressure applied & number of scratches
- NLGI Technical Committee on grease cleanliness
 NLGI-ELGI Working Group & mini round-robin
 - D1404 method under evaluation
 - Comparison with other methods (e.g. Hegman Gauge, FTM 3005.4, DIN 51 813)
 - Identify potential improvements to method

D7527 Antioxidant Content by Voltammetry

- Published in 2010
- Measures remaining primary antioxidants (phenolic & aminic) in the product
 - Estimation of remaining useful service life of the product
- Measurement performed using the RULER instrument
 - Established technology with proven reputation
 - Assist with recommendation for continued use or replacement of in-service grease

D7718 In-Service Grease Sampling Practice

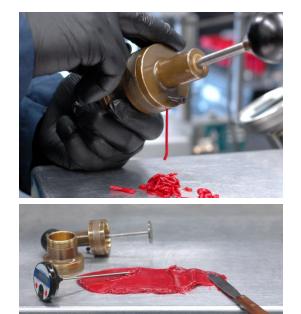
- Need identified for a standard guide for sampling in-service greases
 - Gearboxes, electric motors, actuators, etc
- In-service grease sampling more difficult than oil
 - How to obtain "representative" sample ?
 - Guide addresses multiple issues:
 - Location for sampling (proximity to contact surfaces)
 - How to extract sample (syringe, spatula, collector)
 - Maintaining sample integrity (during/after sampling)
 - Coping with inhomogeneous samples

Section 2 - Standards

- D217 Cone Penetration
- D1092 Apparent Viscosity
- D1403 Small-Scale Cone Penetration
- D1831 Roll Stability
- D7342 Shear Stability in the Presence of Water

D217 Cone Penetration

- Methods for undisturbed, unworked, worked, extended worked, & block penetration
 Originally published in 1925
- ASTM definition of "lubricating grease"
 Lists NLGI consistency grades
- Revised standard issued in 2010



- Now specifies 3 measurements from a single specimen
 - Previously required 3 specimens for NLGI 3 & softer greases
- Allows use of alternate sample cooling methods
- Recent round-robin to confirm & update precision statements

D1403 Small-Scale Cone Penetration

- ½-scale & ¼-scale versions of D0217
 Unworked & worked penetration only
 Manual working
- Used when sample quantity is limited
- Used in some other test methods
 e.g. D1831 Roll Stability
- Revised standard issued in 2010
 - Similar modifications to D0217

Recent round-robin to confirm & update precision statements

D7342 Shear Stability in the Presence of Water

- New standard added in 2007, reapproved in 2012
- Two procedures:
 - Wet working (100,000 strokes)
 - Wet roll stability (2 hours @ room temperature)
- 10% Water added to grease
 - Premixed into grease before test (worker)
 - Added separately at start of test (roll stability tester)
- Measure change in penetration
 - Shear stability in the presence of water

Section 3 - Standards

- D566 Dropping Point
- D972 Evaporation Loss
- D1742 Oil Separation
- D2265 Dropping Point (wide temp range)
- D2595 Evaporation Loss (wide temp range)
- D4425 Oil Separation (centrifugal)
- D6184 Oil Separation (conical sieve)

D566 Dropping Point

Original dropping point test method using oil bath

- First published in 1940
- Limited to 288°C maximum temperature
- Balloted for withdrawal in 2008
 - 2 negative votes received
 - Still referenced & required by some users
 - e.g. Military grease specifications
- Standard reapproved in 2009

D2265 Dropping Point (wide temperature range)

- Aluminum block test method
 - Wide temperature range
 - Up to 309°C maximum temperature
- Used for high temperature greases:
 - Complex soap, polyurea, calcium sulfonate thickeners
- Manual method using mercury thermometer
 - Difficult to find alternatives to mercury
 - Rate of heat transfer & response time critical
 - Candidate PRT system may be \$3K/each for initial trials

Section 4 - Standards

- D2266 Four-Ball Wear
- D2509 Timken
- D2596 Four-Ball EP
- D4170 Fretting Wear (Fafnir)
- D5706 EP by SRV
- D5707 Friction & Wear by SRV
- D7420 Tribomechanical Properties of Grease
 Lubricated Plastic Socket Suspension Joints by SRV
- D7594 Fretting Wear Test by SRV

D2266 & D2596 Four-Ball Wear & EP

- Four balls in pyramid configuration
 Three balls fixed, one ball spinning
- D2266 Wear Test
 - 1200 RPM, 75°C, 40 kg, 60 minutes
 - Measure scar diameter on fixed balls
- D2596 EP Test
 - 1770 RPM, 27°C, 10 seconds/load
 - Increasing load stages; run to weld point
 - Plan to harmonize conditions with oil test
 - US & European versions operate at different speeds

SRV-Based Standards

D5706 (EP), D5707 (Friction & Wear), D7420 (Plastic Suspension Joints), D7594 (Fretting Wear)

- All utilize ball-on-disk or pin-on-disk configuration
- Can increase step load to lubricant film rupture

Variables:

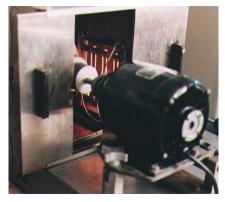
- Temperature
- Applied Load
- Stroke length
- Frequency of oscillation
- Test piece materials

Section 5 - Standards

- D1263 Wheel Bearing Leakage
- D1478 Low-Temperature Ball Bearing Torque
- D3336 High-Temperature Ball Bearing Life
- D3527 Wheel Bearing Life
- D4290 Wheel Bearing Leakage (Accelerated)
- D4693 Low-Temperature Wheel Bearing Torque

D1263 Wheel Bearing Leakage

1930's Ford front wheel bearing hub
 Conditions: 660 RPM, 105°C, 6 hours
 Leakage reported in grams
 Balloted for withdrawal in 2010
 Approved with no negatives


Superseded by D4290 accelerated test

D3527 High Temperature Wheel Bearing Life

Same hardware as for D4290 (Leakage) test

- Based on 1950's front wheel hub assembly
 - 1000 rpm, 111 N thrust load, 160°C
 - Cyclic operation: 20 hours on, 4 hours off
- Electric motor current measured
 - Failure based exceeding allowed increase
- D3527 test precision issues
 - Task force investigation
 - Identify inconsistencies, ambiguities
 - Evaluate potential effects of major changes
 - Reproducibility & test severity

Section 6 - Standards

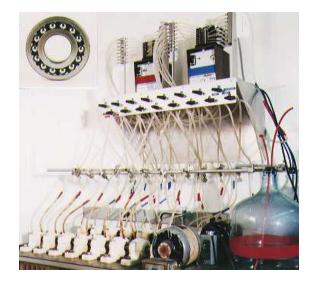
- D1264 Water Wash-Out
- D1743 Rust Test (Distilled Water)
- D4049 Water Spray-Off
- D5969 Rust Test (Synthetic Sea Water)
- D6138 Dynamic Rust Test (Emcor)

D4049 Water Spray-Off

Direct impingement of a water spray on a greasecoated steel plate

■ Grease film – 0.8 mm (1/32 inch)

- Water at 38°C (100°F), 276 kPa (40 psi)
- 5 minutes spray time
- Results reported as % loss
- Mini round-robin conducted
 - Clarify specification & designation for spray nozzle
 - Orientation, calibration, cleaning



D6138 Dynamic Rust Test (Emcor)

SKF test method

- 1306 K double-row self-aligning ball bearings (steel cage)
- Two bearings per grease sample (i.e. duplicate)
- 168 hour test cycle:
 - 3 x (8 hours on, 16 hours off)
 - Then 108 hours off
- Distilled water, or corrosive solution

Rating scale:
 From '0' (no corrosion)
 To '5' (>10% corrosion)

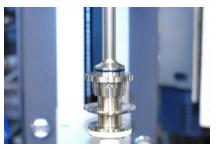
Section 7 – Test Method Development

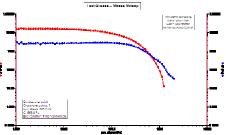
<u>Main activities:</u>Grease Rheometry

Lincoln Ventmeter Test Standardization

Grease Density Measurement

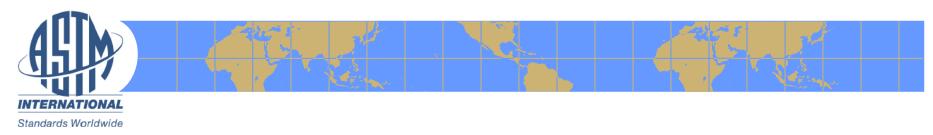
Thin Film Thermal Stability




Grease Rheometry

Potential to be powerful technique

- Useful for evaluation of in-service greases
 - Small sample size (~5 g)
- Test under controlled conditions
 - e.g. applied stress, temperature, frequency
- Initial focus on a fundamental test
 - Controlled stress-sweep
 - Irrecoverable breakdown of thickener structure
- More complex methods to follow



Lincoln Ventmeter Test Standardization

- Grease mobility at low temperatures
- Standardization of well-known Lincoln test method
 - Small-scale version of centralized distribution system
 - 762 cm (300 in) of 3 mm (1/8-in) tubing
- Grease pressurized at start of test
 - Measures time required for the pressure to drop to a predetermined value
 - Establish recommended minimum operating temperature

D02.09.E Grease Oxidation - Standards

D942 Pressure Vessel Oxidation

D5483 Oxidation Induction Time by Pressure Differential Scanning Calorimetry

D5483 PDSC Oxidation Induction Time

Static oxidation test

- Very small sample size (2 mg)
- 2.5 MPa (500 psi) pure oxygen
- Temperature 155–210°C

- Exotherm on chart indicates oxidation
 - Oxidation induction time reported in minutes
 - Result at highest temperature with induction time ≥ 10 minutes
- Current standard developed on specific manufacturer's equipment
 - Round-robin planned to establish updated precision statement using equipment from multiple manufacturers

D02.B0.04 Automotive Greases - Standard

D4950 Standard Classification & Specification for Automotive Service Greases

- Developed by SAE, ASTM, & NLGI
- Defines wheel bearing grease categories GA, GB, & GC
- Defines chassis grease categories LA & LB

NLGI policy:

Only GC & LB service marks may be displayed

USA Technical Advisory Group Grease Panel

- Technical Advisory Group to ANSI (American National Standards Institute)
 ANSI is US voting member of ISO
- TAG Provides input & voting advice to ANSI for ISO standards related to lubricating grease
- Some ASTM D02.G Section Chairs also chair ISO working groups

Areas of Possible Future Interest

Grease Noise Testing

 e.g. SKF BeQuiet+, FAG MGG

 Flammability Resistance

 Of major interest for Steel Mills

 Additional Rheology methods

 More complex evaluations

 Automatic Dropping Point
 Micro-oxidation (Penn State)

Other ASTM Activities

Inter-Laboratory Correlation Program (ILCP)

- 41 proficiency programs covering variety of products
- Grease program runs in April & October
 - Participating labs receive coded reports with statistical analysis
 - Can form part of lab Quality System processes
- ASTM Certification Programs
 - New initiative by ASTM
 - By request, may add:
 - Personnel certification program
 - Product certification program

Feedback Request

- Please advise David Turner (<u>david.turner@shell.com</u>), Or any subcommittee officer, of any grease test method development needs
- ASTM International Headquarters in USA
 Tel: +1 (1) 610 832 9500 / Fax: +1 (1) 610 832 9555
 e-mail: service@astm.org / Web: www.astm.org
- ASTM European Office
 Tel: +44 (0)1462 437933 / Fax: +44 (0)1462 433678
 e-mail: <u>atp@ameritech.co.uk</u> / Web: <u>www.ameritech.co.uk/astm</u>

Questions?

Standards Worldwide

Thank You

ExonMobil Research and Engineering